Structured Factorizations in Scalar Product Spaces

نویسندگان

  • D. Steven Mackey
  • Niloufer Mackey
  • Françoise Tisseur
چکیده

Let A belong to an automorphism group, Lie algebra or Jordan algebra of a scalar product. When A is factored, to what extent do the factors inherit structure from A? We answer this question for the principal matrix square root, the matrix sign decomposition, and the polar decomposition. For general A, we give a simple derivation and characterization of a particular generalized polar decomposition, and we relate it to other such decompositions in the literature. Finally, we study eigendecompositions and structured singular value decompositions, considering in particular the structure in eigenvalues, eigenvectors and singular values that persists across a wide range of scalar products. A key feature of our analysis is the identification of two particular classes of scalar products, termed unitary and orthosymmetric, which serve to unify assumptions for the existence of structured factorizations. A variety of different characterizations of these scalar product classes is given.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Analysis of Tensor Models for Learning on Structured Data

While tensor factorizations have become increasingly popular for learning on various forms of structured data, only very few theoretical results exist on the generalization abilities of these methods. Here, we discuss the tensor product as a principled way to represent structured data in vector spaces for machine learning tasks. To derive generalization error bounds for tensor factorizations, w...

متن کامل

Perturbation Bounds for Hyperbolic Matrix Factorizations

Several matrix factorizations depend on orthogonal factors, matrices that preserve the Euclidean scalar product. Some of these factorizations can be extended and generalized to (J, J̃)-orthogonal factors, that is, matrices that satisfy H JH = J̃ , where J and J̃ are diagonal with diagonal elements ±1. The purpose of this work is to analyze the perturbation of matrix factorizations that have a (J, ...

متن کامل

Pursuits in Structured Non-Convex Matrix Factorizations

Efficiently representing real world data in a succinct and parsimonious manner is of central importance in many fields. We present a generalized greedy pursuit framework, allowing us to efficiently solve structured matrix factorization problems, where the factors are allowed to be from arbitrary sets of structured vectors. Such structure may include sparsity, non-negativeness, order, or a combi...

متن کامل

Structured Condition Numbers and Backward Errors in Scalar Product Spaces

We investigate the effect of structure-preserving perturbations on the solution to a linear system, matrix inversion, and distance to singularity. Particular attention is paid to linear and nonlinear structures that form Lie algebras, Jordan algebras and automorphism groups of a scalar product. These include complex symmetric, pseudo-symmetric, persymmetric, skewsymmetric, Hamiltonian, unitary,...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM J. Matrix Analysis Applications

دوره 27  شماره 

صفحات  -

تاریخ انتشار 2005